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ABSTRACT 

 
A burgeoning field of research has begun to directly compare the impacts of pairing vehicle automation 

and connectivity to automation alone. While most recent impact studies that evaluate adaptive cruise 

control (ACC) and cooperative adaptive cruise control (CACC) rely on traffic simulation, the US 

Department of Transportation has recently conducted ACC and CACC tests on a closed-loop track with 

and without vehicle-to-vehicle communications (V2V). 

The Cooperative Automated Research Mobility Applications (CARMA) multi-year testing program has 

studied five passenger vehicles equipped with production ACC technology and more recently with 

CACC technology featuring dedicated short-range communication (DSRC) systems. These tests were 

run at the Aberdeen Proving Ground utilizing similar conditions and drive schedules.  

We compared the performance of these ACC and CACC runs by examining vehicle trajectory data and 

assessing any operational and environmental impacts. Our findings confirm earlier modeling studies that 

indicate a platoon of CACC-enabled vehicles will often stabilize fluctuations in speed and the following 

time gap between vehicles. Given some limitations in CARMA data quality and in the use of operating 

modes to calculate tailpipe emissions and fuel consumption, we could not draw definite conclusions on 

emissions or energy impacts. These results also suggest that, depending on the configuration of the ACC 

and CACC controls, there may be tradeoffs between improved traffic flow, user comfort, and 

environmental benefits. 

 

INTRODUCTION 

 

Vehicle automation and connectivity are expected to revolutionize the future of transportation. Many 

studies have modeled the benefits of connected and automated vehicles, but far fewer have investigated 

the incremental impact of pairing V2V communications with an automated driving system such as 

adaptive cruise control (ACC). Fewer still have attempted to measure the performance of driving with 

cooperative adaptive cruise control (CACC) (1), and very few have explicitly compared the performance 
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of ACC and CACC. Comparisons of ACC and CACC systems through rigorous instrumented vehicle 

tests are needed to determine any advantages of cooperative automation over automation without 

communications. 

Connected and automated vehicles (CAVs) have several sometimes competing, sometimes synergistic 

impacts: 

 Traffic flow and operations, 

 Safety and user comfort, and 

 Energy consumption and emissions. 

While it may be possible to achieve optimal benefits for any one or perhaps two of these impact areas, a 

multi-criteria optimization often leads to certain tradeoffs (2). For example, a CACC system may be able 

to improve roadway capacity by decreasing the following time gaps between vehicles but not without 

some consequences. The shorter time gaps may also create a less smooth driving trace, pose a greater 

risk to user safety, and increase energy consumption and emissions. This paper explores potential 

tradeoffs of these three impact areas under live test conditions with an emphasis on finding a suitable 

middle ground for operational and environmental benefits. Safety measures are critically important to 

the viability of ACC and CACC technologies, but we did not consider them directly in this study. 

One of the few studies that has tested both ACC and CACC driving under similar conditions is the US 

Department of Transportation’s Cooperative Automation Research Mobility Applications (CARMA) 

Program. Since 2014, Turner-Fairbank Highway Research Center (TFHRC) has been testing passenger 

vehicles with range sensors for ACC-following, sometimes coupled with dedicated short range 

communications (DSRC) on a 4.5-mile closed loop at the Aberdeen Proving Ground in Maryland (3). 

An aerial image of the test track from a recent CARMA report is reproduced in Figure 1a (4). This study 

makes use of vehicle test data collected through CARMA to evaluate benefits and tradeoffs in terms of 

operations and environmental impacts. 

Instrumented Vehicle Testing 
As part of the CARMA Program, FHWA purchased five Cadillac SRX vehicles from model year 2013, 

each equipped with ACC technology from the original equipment manufacturer (OEM), see image of 

instrumented vehicles in Figure 1b (3). The SRXs were then retrofit with third-party DSRC devices by 

TFHRC engineers and technicians to demonstrate CACC as a proof-of-concept (4). While much of the 

early CARMA testing at Aberdeen had been to evaluate CACC functionality, there were some initial test 

runs with the production ACC system as a baseline. More recent tests have refined CACC platooning 

and following algorithms (5). The All Predecessor Following (APF) platooning algorithm was 

developed and programmed by FHWA, such that a platoon forms behind the lead vehicle and the 

following vehicles utilize V2V communications to maintain an appropriate following time gap between 

not just the preceding vehicle but all other vehicles in the platoon (6). Current CARMA testing is 

implementing SAE Level 2 of automation capabilities (7), cooperative lane change and merging, and 

now public road applications. Most of the sensors on the instrumented CARMA vehicles recorded at 10 

Hz, though a few had 20 Hz measurements. 
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Figure 1. (a) Aerial representation of the Aberdeen Proving Ground with labeled test track waypoints, and  (b) 
image of the five instrumented Cadillac SRXs for CARMA testing (3, 4). 

      

To date, there have been three testing phases: CARMA1 (2014-2016), CARMA2 (2016-2018), and 

CARMA3 (2018-present, expected to finish later in 2020). For this analysis, two ACC runs in July 2016 

were selected from CARMA1 and six CACC with APF runs in July 2018 were selected from CARMA2 

for comparison. While the CARMA1 ACC test vehicles utilized the production algorithm for vehicle 

following, any references to CACC later in this paper assume that the CARMA2 CACC test vehicles are 

operating with the APF platooning algorithm. Both CARMA1 and CARMA2 were performed with 

similar driving traces and platoon formations. For reference, both CARMA datasets are publicly 

available through the Intelligent Transportation Systems DataHub (7, 8).  

Literature Review 
In a previous systematic review and meta-analysis examining the operational and environmental impacts 

of ACC and CACC studies, we identified some related testing (8). However, many of these research 

studies utilized heavy-duty trucks or had been conducted at signalized intersections and are therefore not 

directly comparable to CARMA. Relevant ACC and CACC testing over the past decade has primarily 

been completed by TFHRC and other research offices at FHWA, the California Partners for Advanced 

Transit and Highways (PATH), and researchers from Dutch universities. 

Bu, Tan, and Huang were able to integrate a custom CACC controller with the commercially available 

ACC and were one of the first to show the shorter time gap for CACC than a human driver (9). 

Similarly, Nowakowski et al. researched the willingness of drivers to accept various time gaps, finding 

that CACC driving could lead to shorter gaps than either ACC or naturalistic driving (10). Both studies 

show that V2V communications can lead to closer following behavior for a CACC platoon than an ACC 

platoon and subsequently greater highway capacity. Recent studies by Milanés and others at California 

PATH have tested mixed traffic scenarios and tried to validate an ACC driver model against 

experimental data (11, 12). This research from California has been focused on investigating CACC 

dynamics and controls more so than potential fuel savings and emission benefits. Ploeg from TNO 

Eindhoven and van Arem from TU Delft have also elaborated on controller design and model 

development for these cooperative automation systems (13, 14). 

There is a growing body of simulation studies suggesting that CACC and to some extent ACC will 

smooth driving and reduce energy consumption and emissions compared to manual drivers (15–18), but 

there is limited empirical evidence to confirm these environmental benefits. The CARMA Program was 

intended to fill some of those data collection gaps. Elsewhere, Ma et al. has shown some moderate fuel 

efficiency gains during field tests of light-duty CAVs, up to more than 20% fuel savings on a particular 

(a) (b) 
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hilly arterial segment (19). Intuitively, Knoop et al. finds that string instability of an ACC platoon causes 

greater fuel consumption and user discomfort (20). Further ACC and CACC testing is needed to validate 

fuel use and emission reductions. 

The most recent experiments with CACC-enabled vehicles are reporting promising energy and emission 

results. For light-duty CACC applications coupled with signal coordination, Liu et al. has found fuel 

efficiency improves by more than 30% in a scenario with 40% CACC market penetration (21). For 

heavy-duty applications, Ramezani et al. reported significant fuel savings for CACC truck platoons 

using a new regression model for aerodynamic drag developed with the latest experimental data (22). 

This paper proposes to compare emissions and fuel use for production ACC-following and CACC with 

APF applications. 

 

STUDY DESIGN 

 
The first step in processing the instrumented vehicle data from Aberdeen was to combine the two ACC 

runs (1546 and 1558) in CARMA1 and the six CACC runs (5, 6, 9, 10, 12, and 13) in CARMA2 into a 

single, unified dataset for this performance evaluation. All the ACC and CACC runs used the same 

general test procedure (5.0.5) of alternating 45-mph and 60-mph cruising periods, but there were some 

clear differences in the recorded driving traces. This unified CARMA dataset was cleaned and parsed for 

better comparability between runs and then additional calculations were made to evaluate operational 

and environmental performance. The methodology for preparing and executing these calculations of 

performance measures and their results are described in the sections below. 

All the runs in CARMA1 and CARMA2 deployed five instrumented vehicles and referred to each 

vehicle in the platoon by its color. The black vehicle served as the lead vehicle for all the runs except 

one. Each run had a distinct vehicle order with many of the CACC runs having the same order. For the 

ACC runs from CARMA1 (4), the vehicle order was as follows: 

 1546: black, green, silver, grey, and white 

 1558: black, white, grey, black, and green 

Respectively, for the CACC runs from CARMA2 (19), the vehicle order was as follows: 

 5: black, green, grey, silver, and white 

 6: black, green, grey, silver, and white 

 9: black, green, grey, silver, and white 

 10: black, green, grey, silver, and white 

 12: white, silver, grey, black, and green 

 13: black, green, grey, silver, and white  

Given the varying vehicle color order for each run, the lead vehicle and every subsequent following 

vehicle was labeled as LV, FV1, FV2, FV3, and FV4 for consistency and comparability. Note that ACC 

Run 1546 and CACC Run 5, 6, 12, and 13 were single-loop test applications, while ACC Run 1558 and 

CACC Run 9 and 10 were two-loop applications. 

Processing of Instrumented Vehicle Data 
The following common fields collected from CARMA1 and CARMA2 were used to generate the initial 

unified test dataset, including raw variable labels where appropriate: 
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- run number, 

- UTC time, 

- elapsed time of run in seconds, 

- vehicle color (how the five vehicles were uniquely identified in each run), 

- speed from the vehicle’s controller area network (CAN) bus in meters per second [vehspdavgdrvn_srx], 

- secondary speed from an aftermarket global positioning system (GPS) device in meters per second 

[velocity_fwd_pinpoint], 

- distance to preceding vehicle in meters from forward-looking radar sensors for vehicle range 

measurements [flrrtrk1range_srx for CACC and distToPVeh for ACC], 

- axle torque in Newton-meters [acc_axle_torque_cmd_axle_torque_request], and 

- angular speed of engine in revolutions per minute (RPM)[engine_rpm_srx]. 

The CACC APF platooning algorithm in CARMA2 used the pinpoint GPS location to measure and 

control the headway between the GPS antenna on the lead vehicle and on the following vehicles. For the 

ACC runs, the white vehicle was missing CAN bus speed, torque, and RPM data, so we utilized the GPS 

speed readings as necessary and removed all the dependent measures from the white vehicle. All other 

vehicle speeds were recorded directly from the vehicle CAN bus according to the average speeds of 

measured non-propulsive wheels.  

We converted speed to miles per hour (mph) and applied some additional constraints to the full dataset 

to cut out some initial idling and ramp-up time: 1) records prior to the lead vehicle first reaching 20 mph 

were removed, 2) records after the lead vehicle then dropped below 19 mph were also removed, and 

finally 3) any other records with null values in speed data were removed as well. We elected not to cut 

the tail of CACC Run 9 since the lead vehicle did not drop below 19 mph before the end of recording. 

Further calculations were then performed on the combined ACC and CACC dataset to compare the 

operational impacts. 

 

RESULTS AND DISCUSSION 
 

This paper has broken results into two subsections: one for vehicle operations and the other for 

emissions and energy use impacts. In this section, we discuss the operational and environmental data 

and then any calculations made to present results. 
 

Operational Data and Calculations 
While acceleration was measured onboard the test vehicles, it also had noticeable data gaps as well. We 

calculated acceleration 𝑎 (in feet per second squared) as the change in speed 𝑣 over the change in time 

elapsed 𝑡 between the current time step 𝑖 and the previous step 𝑖 − 1 instead of having an incomplete 

range of acceleration data and potential inconsistencies between measured speed and acceleration.  

Similarly, vehicle jerk is the second derivative of measured speed and serves as a proxy for user comfort 

(23). Jerk 𝑗 was calculated (in feet per second cubed) as the change in derived acceleration over the 

change in time elapsed between the current time step and the previous step.  

For each time step, the following time gap (reported in seconds) is the time needed to travel between the 

lead vehicle’s rear bumper and the following vehicle’s front bumper at the instantaneous speed of the 

following vehicle (24). Finally, we calculated the change in distance traveled for the lead vehicle of 

every run as the CAN bus speed multiplied by the change in time elapsed over consecutive time steps. 
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For some preliminary comparisons, the mean values of speed, time gap, and distance traveled in Table 1 

for every run, where the five-vehicle platoon was considered except for the distance traveled, which was 

only for the lead vehicle. 

Table 1. Summary statistics of the performance measures across ACC and CACC runs (all vehicles were 

included in averages, but only the distance traveled of the lead vehicle was reported). 

  Average 

 Speed (mph) 

Average Time  

Gap (s) 

Distance  

Traveled (mi) 

Run No. Full Platoon LV Only 

CACC 5 49.99 1.010 3.685 

CACC 6 49.12 0.933 3.984 

CACC 9 53.84 0.919 8.154 

CACC 10 53.88 0.666 8.874 

CACC 12 49.83 0.886 3.714 

CACC 13 49.97 1.325 3.638 

ACC 1546 52.35 0.886 4.320 

ACC 1558 53.13 0.876 8.804 

 

There is little to no difference in the average speed and time gap between the ACC and CACC runs. 

These summary statistics are a helpful reference but do not demonstrate differences in ACC and CACC 

driving behavior. As we found in the meta-analysis of ACC and CACC studies, time gaps consistently 

shorter than one second can be maintained safely by human drivers on congested highways, so it appears 

the CARMA platoons could have achieved even shorter gaps. While CACC should be able of achieving 

shorter gaps, the measured gap ultimately depends on where the target gap is set and how well the 

following technology can meet the target. For example, the test vehicles in CACC Run 10 did 

reasonably well at achieving the relatively short target of 0.6 s, but the gap realized was a bit longer than 

desired. Nonetheless, many of the other CACC runs had target gaps upwards of 0.6 s, similar to the 

targets for the ACC runs. In real-world mixed traffic, many drivers operating with ACC find gaps of less 

than 1.0 s are necessary to discourage others from cutting in (8). 

To further compare the performance differences of the ACC and CACC runs, we have plotted the time 

series of speed, jerk, and time gap. Jerk was chosen over acceleration in these comparisons because the 

trends were similar and jerk reflected starker differences between ACC and CACC behavior. Each run 

was indexed when it began recording and the speed-based constraints above were then applied based on 

the start and end time cutpoints. The ACC sensors are designed to follow the directly preceding vehicle 

while the DSRC devices on the CACC-enabled vehicles can communicate with all other vehicles in the 

platoon. The controller design and the use of communicated data account for the ACC and CACC 

behavior differences. 

When examining the speed traces across all the runs in Figure 2a, it becomes evident that ACC platoons 

behave differently than the CACC platoons. The ACC-following vehicles oscillate after acceleration and 

deceleration and take some time to match the cruising speed of the lead vehicle. It is particularly 

apparent during braking events for both ACC runs. This undershooting behavior while braking is most 

pronounced in ACC Run 1546 but also occurs in Run 1558. In contrast, the CACC runs show tight 

following and have minimal oscillations when accelerating or braking. Even with minor latency in 

CACC-following, it does not oscillate like ACC-following. 
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Figure 2. (a) Time series of the vehicle speed readings (mph) from the CAN bus for the five instrumented SRXs in each run. 
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Figure 2. (b)  Time series of the calculated vehicle jerk (ft/s3) for the five instrumented SRXs in each run. 
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Figure 2. (c)  Time series of the following time gap (s) to the preceding vehicle for the five instrumented SRXs in each run.
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The time series of jerk in Figure 2b also draws a distinction between ACC and CACC behavior. 

The CACC runs have some moments of intense jerk during acceleration and braking events.  

This jerky behavior in CACC-following is characterized by scatter at specific 

acceleration/deceleration transition points in the driving traces, whereas ACC-following does not 

show much scatter. Upon closer inspection, the maximum absolute values of calculated jerk for 

the CACC runs was in the range of 300-500 ft/s3, while for the ACC runs was 70-120 ft/s3. These 

are likely to be sensor or signal errors and generate unrealistic values; however, these outliers 

were indicative of sudden changes in acceleration and therefore not discarded from the time 

series for jerk. 

All the test vehicles were operated by professional drivers willing to accept a time gap setting of 

about one second. Despite having similar one-second gaps, the ACC and CACC platoons show 

different trends in Figure 2c. The ACC-following vehicles fluctuate around one-second gaps, 

never achieving very stable gaps. In comparison, the CACC-following vehicles converge to time 

gaps of roughly one second and demonstrate much greater string stability, particularly for CACC 

Runs 5, 9, and 10. In these highlighted runs, even when the vehicles are accelerating or braking, 

the CACC systems hold consistent gaps. We presume that CACC Runs 12 and 13 do not 

converge due to differences in the CACC APF controller configurations, which may have had 

varying gap settings. The discontinuities in the time gap plot, particularly for CACC Runs 9 and 

10, seem to occur primarily at the end of testing when the platoon is breaking up and dispersing, 

although the data was still being collected. Discontinuities could also be an artifact of the 

removed null values. Nevertheless, the CACC runs have tighter following behavior than the 

ACC runs, but that seems to have some tradeoffs in terms of driving smoothness, user comfort, 

and environmental benefits. 

We also evaluated the comparability of ACC and CACC runs. Since each run had differing 

cruise durations at 45 and 60 mph and a differing number of transitions, we utilized the kinetic 

intensity ratio (reported as km-1) described by O’Keefe et al. to determine an index for the 

relative energy consumption by run (25). The KI ratio is defined as the characteristic acceleration 

�̃� over the aerodynamic speed squared 𝑣𝑎𝑒𝑟𝑜
2  for the current time step 𝑖 and the previous step 𝑖 −

1, as expressed in Equation 1. As the longer form given in Equation 2, it becomes 

 𝐾𝐼 =  
�̃�

𝑣𝑎𝑒𝑟𝑜
2 , (1) 

 

𝐾𝐼 ≅
∑ 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (

1
2

(𝑣𝑖
2 + 𝑣𝑖−1

2 ) + 𝑔 ∙ ∆ℎ𝑖,𝑖−1)𝑁−1
𝑖=1

∑ 𝑣𝑖,𝑖−1
3̅̅ ̅̅ ̅̅ ̅ ∙ ∆𝑡𝑖,𝑖−1

𝑁−1
𝑖=1

≅

∑ 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (
1
2

(𝑣𝑖
2 + 𝑣𝑖−1

2 ))𝑁−1
𝑖=1

∑ 𝑣𝑖,𝑖−1
3̅̅ ̅̅ ̅̅ ̅ ∙ ∆𝑡𝑖,𝑖−1

𝑁−1
𝑖=1

, 
(2) 

 

where for CARMA the measured CAN bus speed 𝑣 and time elapsed 𝑡 were used and the second 

numerator term with acceleration due to gravity 𝑔 and elevation ℎ drops because the Aberdeen 

closed-loop tests are assumed to be at zero grade or near-zero grade. The lead vehicle’s KI ratio 

is a decent representation of the run’s overall KI ratio, as shown in Figure 3a and Figure 3b 

respectively, in order to understand the relative energy expended by run. 
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There is some notable variability in kinetic intensity between the runs. We observe that the 

longer, less dynamic runs, namely CACC Runs 9 and 10 as well as ACC Run 1558, have lower 

KI ratios. Additionally, the later following vehicles appear to have larger KI ratios, but it is 

difficult to make any conclusions about the KI ratios for ACC compared to CACC. There may be 

a need to better synchronize the kinetic intensity across runs in future testing and analysis. 

 Figure 3. Kinetic intensity ratios by run for (a) lead vehicles and (b) all five vehicles in platoon. 

Environmental Data and Calculations 

In some scenarios, tighter following behavior comes at the detriment of environmental benefits, 

particularly fuel savings and emissions reductions. The CARMA test vehicles were not 

instrumented with any emissions monitoring equipment and some of the runs measured fuel 

consumption while others did not, so an energy and emissions model was needed. We chose the 

latest EPA’s Motor Vehicle Emission Simulator (MOVES2014b) to estimate modal, project-

level tailpipe emissions and fuel use based on the vehicle-specific power (VSP), speed, and 

acceleration (26). More commonly, VSP is calculated from the speed and acceleration using 

either test data or microscopic traffic simulation results, although VSP for the current time step 𝑖 
can also be calculated from axle torque 𝜏 and RPM number 𝑛𝑅𝑃𝑀 if collected and available. 
These two VSP calculation methods are described below. The speed and acceleration derivation 

of 𝑉𝑆𝑃(𝑣, 𝑎) is Equation 3 and the torque and RPM derivation of 𝑉𝑆𝑃(𝜏, 𝑅𝑃𝑀) is Equation 4. 

𝑉𝑆𝑃(𝑣, 𝑎)𝑖 =
𝐴𝑣𝑖 + 𝐵𝑣𝑖

2 + 𝐶𝑣𝑖
3 + 𝑚𝑣𝑖𝑎𝑖

𝑚
, (3) 

(a) (b) 
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where A is the tire rolling resistance coefficient, B is the rotational resistance coefficient, C is the 

aerodynamic drag coefficient, and m is the vehicle mass. Default road load coefficients A, B, and 

C for a sports utility vehicle (MOVES sourceTypeID 31) came from the sourceusetypephysics 

table in the MOVES2014b database. We pulled the vehicle mass m for the Cadillac SRX from 

the listed OEM curb weight (27), such that 

 A = 0.22112 kW-s/m (kilowatts-seconds per meter), 

 B = 0.00283757 kW-s/m2 (kilowatts-seconds per meter squared), 

 C = 0.000698282 kW-s/m3 (kilowatts-seconds per meter cubed), and 

 m = 1.940 metric tons. 

 

To use the road load coefficients as listed above, speed and acceleration must be in SI units, m/s 

and m/s2 respectively. Even though the speed is directly measured, this VSP calculation method 

relies heavily on approximations of vehicle loads and driving behavior, whereas the alternative 

VSP method with torque and RPM is based on specific high-resolution measurements (28). This 

alternative VSP can be computed through Equation 4: 

 𝑉𝑆𝑃(𝜏, 𝑅𝑃𝑀)𝑖 =
𝜋

30 × 103
(

τ ∙ 𝑛𝑅𝑃𝑀

𝑚
), (4) 

where the 103 factor is for converting watts to kilowatts. The two VSP methods yield starkly 

different results and these differences are evident regardless of whether considering an ACC or a 

CACC run. Figure 4 shows that the reference 𝑉𝑆𝑃(𝑣, 𝑎) has much more noise than the 

alternative 𝑉𝑆𝑃(𝜏, 𝑅𝑃𝑀) for the lead vehicle in both CACC Run 9 and ACC Run 1558. Both 

VSP methods produced a couple of unrealistic spikes, particularly 𝑉𝑆𝑃(𝜏, 𝑅𝑃𝑀), which yielded 

some outlier data. 

Figure 4. Time series of reference 𝑽𝑺𝑷(𝒗, 𝒂) (top) and alternative 𝑽𝑺𝑷(𝝉, 𝑹𝑷𝑴) (bottom) for lead 

vehicle in representative runs CACC 9 and ACC 1558 (some peaks truncated to highlight noise).  
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In CACC Run 9, for instance, the maximum 𝑉𝑆𝑃(𝑣, 𝑎) value is nearly 90 kW/metric ton, 

roughly 2-3 times greater than the threshold for the highest MOVES VSP bin, while the 

maximum 𝑉𝑆𝑃(𝜏, 𝑅𝑃𝑀) value reaches 330-350 kW/metric ton, about 11-12 times greater than 

the highest MOVES bin. Even so, the persistent noise in 𝑉𝑆𝑃(𝑣, 𝑎) makes it less suitable for 

emissions and energy modeling than 𝑉𝑆𝑃(𝜏, 𝑅𝑃𝑀) when considering the rare extreme outliers. 

These differences in power demand carry through to the MOVES operating mode distributions, 

which are dependent on vehicle speed, acceleration, and VSP and which form the basis of any 

project-level energy and emissions estimates. The operating modes were assigned by the 

conditions for the three performance measures laid out below in Table 2. MOVES operating 

mode assignments based on VSP, speed, and acceleration for each time step i that we have 

reproduced from the MOVES technical documentation of light-duty emission rates (29). After 

each time step across all runs is assigned an operating mode, the ACC and CACC driving traces 

were aggregated into distributions by time spent in each operating mode by run. These operating 

mode distributions provide helpful illustrations of how ACC and CACC behavior differed.  

Table 2. MOVES operating mode assignments based on VSP, speed, and acceleration for 

each time step i 

Operating 

Mode 

(opModeID) 

Operation Mode 

Description 

Vehicle-Specific Power 

(VSPi, kW/metric ton) 

Vehicle Speed 

(vi, mph) 

Vehicle 

Acceleration 

(ai, mph/s) 

0 Deceleration/Braking   

ai ≤ -2 OR  

(ai < -1 AND  

ai-1 < -1 AND  

ai-2 < -1) 

1 Idle  -1 ≤ vi < 1  

11 Coast VSPi < 0 1 ≤ vi < 25  

12 Cruise/Acceleration 0 ≤ VSPi < 3 1 ≤ vi < 25  

13 Cruise/Acceleration 3 ≤ VSPi < 6 1 ≤ vi < 25  

14 Cruise/Acceleration 6 ≤ VSPi < 9 1 ≤ vi < 25  

15 Cruise/Acceleration 9 ≤ VSPi < 12 1 ≤ vi < 25  

16 Cruise/Acceleration 12 ≤ VSPi 1 ≤ vi < 25  

21 Coast VSPi < 0 25 ≤ vi < 50  

22 Cruise/Acceleration 0 ≤ VSPi < 3 25 ≤ vi < 50  

23 Cruise/Acceleration 3 ≤ VSPi < 6 25 ≤ vi < 50  

24 Cruise/Acceleration 6 ≤ VSPi < 9 25 ≤ vi < 50  

25 Cruise/Acceleration 9 ≤ VSPi < 12 25 ≤ vi < 50  

27 Cruise/Acceleration 12 ≤ VSPi < 18 25 ≤ vi < 50  

28 Cruise/Acceleration 18 ≤ VSPi < 24 25 ≤ vi < 50  

29 Cruise/Acceleration 24 ≤ VSPi < 30 25 ≤ vi < 50  

30 Cruise/Acceleration 30 ≤ VSPi 25 ≤ vi < 50  

33 Cruise/Acceleration VSPi < 6 50 ≤ vi  

35 Cruise/Acceleration 6 ≤ VSPi < 12 50 ≤ vi  

37 Cruise/Acceleration 12 ≤ VSPi < 18 50 ≤ vi  

38 Cruise/Acceleration 18 ≤ VSPi < 24 50 ≤ vi  

39 Cruise/Acceleration 24 ≤ VSPi < 30 50 ≤ vi  

40 Cruise/Acceleration 30 ≤ VSPi 50 ≤ vi  



 
 

14 
 

 

The low signal-to-noise ratio in the VSP calculations—particularly for the speed and acceleration 

derivation—leads to uncertainty in the operating mode assignment and distribution. In addition, 

the alternative VSP calculation from torque and RPM peaks well beyond the highest bin of 30 

kW/metric ton in these CARMA tests. Despite criticism that MOVES VSP bins are too broad, 

and should be more narrowly defined like in the Comprehensive Modal Emissions Model 

(CMEM),(30) measurement noisiness leads to VSP assignments and distributions that may not 

be representative of CACC or ACC driving behavior. Considering that emission rates correlate 

well with operating modes (29), the current VSP bin structure in MOVES may be causing an 

under-prediction in energy and emission results. 

Interestingly, driving behavior changes between the ACC and CACC runs are more clearly 

distinguished when VSP is derived from torque and RPM than when it is derived from speed and 

acceleration. These following behavior differences are well depicted in Figure 5, such that the 

operating mode distribution with 𝑉𝑆𝑃(𝜏, 𝑛𝑅𝑃𝑀) skewed towards high speed and high power bins. 

We also find that there is fairly good agreement between the time fractions spent in each 

operating mode in the representative ACC and CACC run for reference 𝑉𝑆𝑃(𝑣, 𝑎) and 

alternative 𝑉𝑆𝑃(𝜏, 𝑛𝑅𝑃𝑀) respectively. The starker contrast is between the VSP calculation 

methods than the following technology.  

Figure 5.  Operating mode distributions using reference 𝑽𝑺𝑷(𝒗, 𝒂) (top) and alternative 

𝑽𝑺𝑷(𝝉, 𝑹𝑷𝑴) (bottom) for representative runs CACC 9 and ACC 1558. 



 
 

15 
 

 

With the operating mode distributions by run, we were finally able to compare energy 

consumption and emissions using MOVES. Each run was defined as a separate restricted-access 

highway link (roadTypeID 2) and the operating mode distributions were used as project-level 

inputs to MOVES. To match the CARMA testing as best as possible, we also entered the average 

platoon speed and distance traveled of the lead vehicle for every run as MOVES inputs. Since all 

the CARMA SRXs had odometer readings well under 30,000 miles, we assumed they were new 

vehicles without any deterioration to their emission after-treatment systems. National defaults 

were applied for all the other project-level MOVES inputs. 

Depending on VSP method, the energy and emission results varied greatly. We normalized the 

MOVES emission inventories by the miles traveled in order to fairly compare between runs 

using distance-based emission rates (in grams per mile). Figure 6 presents emission rates for 

nitrogen oxides (NOx) and fine particulate matter (PM2.5) as well as total energy consumption 

rates according to the two VSP methods. What jumps out between the methods is that the 

alternative 𝑉𝑆𝑃(𝜏, 𝑛𝑅𝑃𝑀) generates energy rates that are roughly twice, PM2.5 rates that are 2-3 

times, and NOx rates that are 3-4 times as large as the reference 𝑉𝑆𝑃(𝑣, 𝑎). Given the issues with 

when using the measured speed and acceleration to calculate VSP and assign operating modes, it 

is likely that 𝑉𝑆𝑃(𝑣, 𝑎) is underpredicting emissions and energy consumption for CARMA.  

The rates based on reference 𝑉𝑆𝑃(𝑣, 𝑎) are more or less consistent between runs for NOx, 

PM2.5, and energy consumption. On the other hand, the rates from alternative 𝑉𝑆𝑃(𝜏, 𝑛𝑅𝑃𝑀) do 

reflect some greater variability, which is more in line with the behavioral differences for ACC 

and CACC described above, although it is difficult to draw any conclusions. For 𝑉𝑆𝑃(𝜏, 𝑛𝑅𝑃𝑀), 

energy and NOx rates between the ACC and CACC runs are mostly a wash. Due to large 

discrepancy in the PM2.5 rates for ACC Runs 1546 and 1558, those results are also inconclusive. 
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Figure 6. (a) Emission rates for NOx, PM2.5, and energy rates by run using alternative 

𝑽𝑺𝑷(𝝉, 𝒏𝑹𝑷𝑴) from MOVES, and (b) emission rates for NOx, PM2.5, and energy rates by run using 

alternative 𝑽𝑺𝑷(𝒗, 𝒂). 

 

 

SUMMARY 
 

Results from the CARMA tests challenge some of the projected benefits of ACC- and CACC-

following technologies while confirming some others. Our analysis shows that the ACC platoons 

were more likely to experience oscillations before reaching a cruising speed than CACC, which 

aligns well with other literature. Many CACC studies—CARMA included—have tried to 

configure their vehicle control algorithms to close the following time gaps as quickly as possible, 

but this has resulted in more vehicle jerk.  

We found that the relaxed ACC-following behavior exhibited in the CARMA tests may lead to a 

less aggressive driving trace and improved user comfort. Most of the CACC runs in CARMA 

converged to a specific time gap of around one second and stabilized at the cruising speeds, 

whereas the ACC runs have comparable average time gaps but did not stabilize. One of the most 

common modeling assumptions is that CACC systems will reduced time gaps over ACC, but this 

(a) VSP ref (b) VSP alt 
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CARMA analysis could not confirm these time gap reductions. We also examined the 

comparability of CARMA runs through the kinetic intensity ratio. Despite using the same 

general test procedure of switching between 45-mph and 60-mph cruising periods, there was 

some definite variability from run to run. The professional drivers may also introduce some bias 

in terms of close vehicle following compared to real-world conditions with untrained drivers.    

In the absence of tailpipe emission and energy consumption measurements, estimates can be 

modeled. This paper presented two methods for calculating vehicle-specific power, which is later 

used to develop MOVES operating mode distributions and then emission and energy estimates. 

More commonly VSP is derived from speed and acceleration, but this method produced 

substantial noise with the CARMA instrumented vehicle data regardless of following 

technology. In this analysis of energy and emission impacts, the VSP derived from axle torque 

and engine RPM generated much cleaner, more resolved results. Therefore, instantaneous torque 

and RPM measurements are much preferred for the VSP calculation in this analysis of CARMA 

test data. 

Even still, the noisiness in calculated VSP makes it difficult to properly assign values to MOVES 

VSP bins in an effort to effectively model ACC and CACC behavior. Furthermore, the highest 

MOVES VSP bin is for 30 kW/metric ton or more, but many of the CARMA tests showed 

instantaneous spikes in VSP based on torque and RPM that were up to 12 times greater than that 

highest bin. As an artifact of noise and outliers, energy, NOx, and PM2.5 impacts were muddled 

when using either VSP method. Researchers should ensure the data quality of the VSP time 

series before proceeding to emissions and energy modeling. Collectively these findings suggest 

the structuring of the power bins is critical to the evaluation of ACC and CACC tests, and imply 

that finer bins may be necessary to accurately assess differences between these following 

technologies. In addition, real-time portable emissions and fuel consumption monitoring is 

needed to validate any modeled benefits of these testing scenarios. 

Based on this analysis of the CARMA data, we have compiled a few other recommendations for 

future testing. First, better consistency of drive cycles and kinetic intensity across runs would 

enhance comparability. In previous modeling studies, we compared driving with ACC and 

CACC systems against a baseline of naturalistic driving to calculate benefits. Both ACC Runs 

1546 and 1558 were missing some key data for following vehicles and often had conflicting 

results. This suggests additional benchmarking of manual and ACC driving is needed. 

While the Cadillac SRX test fleet performed admirably, each manufacturer produces different 

ACC controls, which can vary depending on the intended vehicle type and driver. It would be 

worthwhile to test a diverse set of commercially available ACC technologies with and without 

V2V communications. Similarly, it would be useful to recalibrate and test these CACC APF 

control algorithms for optimal user comfort, fuel efficiency, and/or air quality benefits. Further 

testing of these following technologies under different conditions and optimizations would 

improve our understanding of the interplay between operational and environmental benefits. 
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